If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2+4f=33
We move all terms to the left:
f^2+4f-(33)=0
a = 1; b = 4; c = -33;
Δ = b2-4ac
Δ = 42-4·1·(-33)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{37}}{2*1}=\frac{-4-2\sqrt{37}}{2} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{37}}{2*1}=\frac{-4+2\sqrt{37}}{2} $
| d/4-10=-6 | | 25-5b=5 | | -4u−5u=18 | | r–126=21r | | g/4− -5=9 | | -10v=-12v+18 | | x+42+5x=180 | | -15f+10=-10-14f | | 3f−7=5 | | (6b+10)/4=7 | | −2(−3x+3)+3x+3= 78 | | 4.9^2x+9=3.3 | | 1/2m+2/3=2/3m+2 | | t+258=5 | | 8j+-18j−-13j+j−-6j=20 | | 21=w/5+6 | | -4(8-x)=4 | | x-24+5x=180 | | (5y+4)=–2(7–2y) | | 13+n+5+6=5+4n-4 | | 10x-2=50 | | 12g-11g=3 | | x2x14=37 | | 2y-3+2=0 | | x^2+19x+82=0 | | 3(7x-6)=6x-10 | | 2s-s=5 | | 2s-s=4 | | 4=c+23/8 | | 5/7x=60 | | 5x+2+98=180 | | 29=x/4-10 |